일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- UI한글변경
- string 함수
- Django의 편의성
- vscode
- 장고란
- 매크로
- 입/출력
- 연결요소
- 이분그래프
- iOS14
- Django Nodejs 차이점
- EOF
- 구조체와 클래스의 공통점 및 차이점
- double ended queue
- 자료구조
- 입출력 패턴
- string 메소드
- c++
- 알고리즘 공부방법
- Django란
- scanf
- getline
- 백준
- correlation coefficient
- 표준 입출력
- k-eta
- 프레임워크와 라이브러리의 차이
- 엑셀
- 시간복잡도
- 2557
- Today
- Total
Storage Gonie
모두를 위한 딥러닝 제20강 ML lab 07-1: training/test dataset, learning rate, normalization 본문
모두를 위한 딥러닝 제20강 ML lab 07-1: training/test dataset, learning rate, normalization
Storage Gonie 2018. 9. 26. 17:39# Learning rate이 너무 커도 안되고 너무 작아도 안되는 이유
- 너무 크면 발산을 해버리고
- 너무 작으면 로컬 미니멈에서 빠져나오지 못하거나 너무 느리게 수렴하게 되는 현상이 발생한다.
# Training set으로 훈련시킨 뒤 Test set으로 테스트 해보는 예시(분류문제)
- 여기서는 분류문제를 다루므로 Training set에 대한 훈련이 다 끝난 뒤, Test set에 대한 예측 Accuracy를 따져본다.
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility
x_data = [[1, 2, 1],
[1, 3, 2],
[1, 3, 4],
[1, 5, 5],
[1, 7, 5],
[1, 2, 5],
[1, 6, 6],
[1, 7, 7]]
y_data = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]
# Evaluation our model using this test dataset
x_test = [[2, 1, 1],
[3, 1, 2],
[3, 3, 4]]
y_test = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1]]
X = tf.placeholder("float", [None, 3])
Y = tf.placeholder("float", [None, 3])
W = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.random_normal([3]))
# tf.nn.softmax computes softmax activations
# softmax = exp(logits) / reduce_sum(exp(logits), dim)
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
# Try to change learning_rate to small numbers
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-10).minimize(cost)
# Correct prediction Test model
prediction = tf.arg_max(hypothesis, 1)
is_correct = tf.equal(prediction, tf.arg_max(Y, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(201):
cost_val, W_val, _ = sess.run(
[cost, W, optimizer], feed_dict={X: x_data, Y: y_data})
print(step, cost_val, W_val)
# predict
print("Prediction:", sess.run(prediction, feed_dict={X: x_test}))
# Calculate the accuracy
print("Accuracy: ", sess.run(accuracy, feed_dict={X: x_test, Y: y_test}))
'''
when learning_rate = 1.5
0 5.73203 [[-0.30548954 1.22985029 -0.66033536]
[-4.39069986 2.29670858 2.99386835]
[-3.34510708 2.09743214 -0.80419564]]
1 23.1494 [[ 0.06951046 0.29449689 -0.0999819 ]
[-1.95319986 -1.63627958 4.48935604]
[-0.90760708 -1.65020132 0.50593793]]
2 27.2798 [[ 0.44451016 0.85699677 -1.03748143]
[ 0.48429942 0.98872018 -0.57314301]
[ 1.52989244 1.16229868 -4.74406147]]
3 8.668 [[ 0.12396193 0.61504567 -0.47498202]
[ 0.22003263 -0.2470119 0.9268558 ]
[ 0.96035379 0.41933775 -3.43156195]]
4 5.77111 [[-0.9524312 1.13037777 0.08607888]
[-3.78651619 2.26245379 2.42393875]
[-3.07170963 3.14037919 -2.12054014]]
5 inf [[ nan nan nan]
[ nan nan nan]
[ nan nan nan]]
6 nan [[ nan nan nan]
[ nan nan nan]
[ nan nan nan]]
...
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When learning_rate = 1e-10
0 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
1 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
2 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
...
198 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
199 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
200 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When learning_rate = 0.1
0 5.73203 [[ 0.72881663 0.71536207 -1.18015325]
[-0.57753736 -0.12988332 1.60729778]
[ 0.48373488 -0.51433605 -2.02127004]]
1 3.318 [[ 0.66219079 0.74796319 -1.14612854]
[-0.81948912 0.03000021 1.68936598]
[ 0.23214608 -0.33772916 -1.94628811]]
2 2.0218 [[ 0.64342022 0.74127686 -1.12067163]
[-0.81161296 -0.00900121 1.72049117]
[ 0.2086665 -0.35079569 -1.909742 ]]
...
199 0.672261 [[-1.15377033 0.28146935 1.13632679]
[ 0.37484586 0.18958236 0.33544877]
[-0.35609841 -0.43973011 -1.25604188]]
200 0.670909 [[-1.15885413 0.28058422 1.14229572]
[ 0.37609792 0.19073224 0.33304682]
[-0.35536593 -0.44033223 -1.2561723 ]]
Prediction: [2 2 2]
Accuracy: 1.0
'''
# Normalization이 필요한예시 및 Normalization으로 보정한 결과(선형값 예측문제)
1) Normalization을 적용하기 전
- 예측을 해보았는데 결과값이 NaN이 나옴
- Normalization을 적용해주기 전에는 W들에 대한 Cost 그래프가 한쪽에 치우쳐진 상태임
2) Normalization을 적용한 후
- Normalization방법 중에서 MinMaxScaler이라 불리는 방식 적용
- 이 방식은 값을 0~1사이의 값으로 변환시켜줌
- Normalization을 적용해주면 W들에 대한 Cost 그래프가 균등해짐
'데이터 사이언스 > 모두를 위한 딥러닝' 카테고리의 다른 글
모두를 위한 딥러닝 제22-23강 lec 08-1, lec 08-2: 딥러닝의 역사 (0) | 2018.09.27 |
---|---|
모두를 위한 딥러닝 제21강 ML lab 07-2: Meet MNIST Dataset (0) | 2018.09.27 |
모두를 위한 딥러닝 제19강 lec 07-2: Training/Testing 데이타 셋 (0) | 2018.09.26 |
모두를 위한 딥러닝 제18강 lec 07-1: 학습 rate, Overfitting, 그리고 일반화 (Regularization) (0) | 2018.09.26 |
모두를 위한 딥러닝 제17강 ML lab 06-2: TensorFlow로 Fancy Softmax Classification의 구현하기 (0) | 2018.09.17 |